题意:定义如果一个数能表示为M^k,那么这个数是好数,问你1~n有几个好数。
思路:如果k是合数,显然会有重复,比如a^(b*c) == (a^b)^c,那么我们打个素数表,指数只枚举素数,2^60 > 1e18,所以打60以内素数就够了。但是显然指数为素数依然会有重复的,比如(a^b)^c == (a^c)^b,这里就要用到容斥了。我们如果用一个数组a[i]表示指数为第i个素数的数的个数,那么最终答案应该是,加上一个的,减去两个的,加上三个的(因为2 * 3 * 5 * 7 > 60,最多只能有三个相乘形成指数)。如果我要算出指数为p的这样的数有几个,那么可以计算pow(n,1.0/p)。先写了一个朴素版的,纯枚举;后来又写了一个dfs的,这样大于3也能用了。
讲一些小细节,每次算出个数我们都减去1这里是去掉了1^p,我们在最后答案加上1。最后一个样例答案是“1001003332”,我的“1001003331”但是过了。
容斥:对于几个集合求解并集大小,那么采用一种方法:加上所有单个集合,减去所有两个集合相并部分,加上所有三个集合相并部分,减去所有四个集合相并部分.....
参考:
代码:
/*朴素写法1*/#include #include
/*dfs写法*/#include #include